
An evaluation of BMX6 for Community Wireless

Networks

Axel Neumann

Pangea.org NGO

Barcelona, Spain

neumann@cgws.de

Ester López

Computer Architecture Department

Universitat Politècnica de Catalunya

Barcelona, Spain

esterl@ac.upc.edu

Leandro Navarro

Computer Architecture Department

Universitat Politècnica de Catalunya

Barcelona, Spain

leandro@ac.upc.edu

Abstract—Nowadays, a growing number of communities of
citizens build, operate and own open IP-based community wire-
less networks with thousands of low capacity nodes actively
participating in routing the data traffic. This article focuses on
one of their concerns, routing and its scalability, by presenting
BatMan-eXperimental Version 6 (BMX6) and evaluating its
performance. BMX6 is a low overhead and scalable mesh network
routing protocol inspired by human networks. Its performance
is evaluated in comparison with OLSR in terms of overhead
and convergence time as networks grow in number of nodes
and diameter. The results show that the convergence time and
protocol overhead per node in BMX6 is not significantly affected
by the addition of new nodes in contrast with OLSR, where both
parameters can grow super-linearly. This confirms the excellent
scalability of BMX6.

I. INTRODUCTION

The key role of Internet access as a fundamental infrastruc-

ture for individual and collective social participation in society

coupled with the widespread availability of WiFi enabled

devices, unlicensed spectrum and open-source software has

enabled the growth of Community Wireless Networks. In this

model communities of citizens can build, operate and own

open IP-based networks. These networks grow organically and

they are becoming very large, with thousands of nodes (e.g.

Freifunk, FunkFeuer, AWMN, Guifi.net). Mesh networking [1]

is a promising model where each node must not only receive

and send its own data, but also serve as a relay for other

nodes, helping to propagate data across the network with no

need for manual reconfiguration as the network evolves. As

a result messages propagate along a path, from node to node

until the destination is reached. Ensuring the delivery of data to

its intended destination is a huge challenge in these networks.

The routing function must allow for continuous connections

and reconfiguration around new, broken or congested paths,

using self-adaptive algorithms and ensure its scalability as the

network grows.

The contribution of this paper is the analysis and evaluation

of the scalability of BMX6, an open-source mesh-routing

protocol, in a network that grows organically with the addition

of new nodes.

Previous work on mesh routing protocols does not differ-

entiate between naturally dynamic (e.g. constantly changing

route metrics) and rather static topology information (like the

IP configuration of nodes) nor differentiate between topology

information that has only local relevance and other with global

relevance. None of the previous approaches take advantage

of optimizable direct communication between neighbouring

nodes, which are usually few from the perspective of a single

node compared to all nodes in the network. In contrast,

BMX6 separates static from dynamic information in a node

description which must be re-propagated only occasionally.

Each BMX6 node keeps detailed information only about the

relevant nodes and links in its neighbourhood and minimises

the amount of protocol traffic by establishing a common under-

standing between neighbours (compact local node identifiers).

The evaluation of BMX6 is done through experimentation

based on emulation over a virtualized network that replicates

the topology of selected Guifi.net zones, one of the largest

Community Wireless Networks, with around 17,000 nodes

overall and around 100 nodes in the Barcelona core network

graph. The analysis is based on a comparison with the well

established OLSR protocol implementation olsrd version 0.6.2

from olsr.org, which is also available as open source.

The rest of this paper is structured as follows: Section

II presents related work where OLSR is compared with

other routing protocols; Section III describes BMX6 and

OLSR mesh routing protocols. In Section IV we describe the

methodology followed to evaluate both algorithms. Section V

demonstrates our claims about BMX6 through an experimental

evaluation based on emulation over a virtualized network

running BMX6 and OLSR, and points out the lessons learnt

and future work. Finally we summarise our contributions in

Section VI.

II. RELATED WORK

There have been several studies about the performance of

different routing protocols in wireless mesh networks.

Johnsen in [2] compares the performance in terms of over-

head, throughput, CPU and memory consumption of OLSR

and BMXd by performing measurements on a real hardware

using a 49-node indoor grid testbed.

Focusing on OLSR, [3] and [4] compare OLSR with AODV,

DSDV and DSR in terms of routing overhead, average delay

and throughput; those papers study the protocols performance

by means of simulation of a grid like topology and considering



a portion of mobile nodes. [5] and [6] evaluate OLSR, DSDV,

DSR and AODV on a real testbed; however, the number of

nodes of the testbed is low (8) or even not mentioned, and

scalability is not analysed.

As far as we are aware, none of the former work have

investigated the performance consequences for mesh routing

protocols when switching from IPv4 to IPv6.

In contrast, our work presents a novel evaluation based on

data of already deployed networks (Guifi.net), and therefore,

considering more realistic network topologies with a larger

number of nodes and in a IPv6 world. It also introduces

BMX6, which even after being used in community networks,

has never been studied and analysed by the research commu-

nity.

III. ROUTING PROTOCOLS

There are many manet routing protocols exploring a com-

bination of different features [8] such as performance metrics

beyond hop-count, cross-layer designs taking metrics from

layer-2, scalability for large networks, robustness to mitigate

service disruption due to link failures or congestion, etc.

Here, we describe BMX6, proposed and developed by

Axel Neumann, in contrast with the Optimized Link State

Routing Protocol (OLSR), based on a link-state algorithm.

The scalability evaluation of BMX6, in terms of performance

(convergence time) and cost (volume of protocol messages),

also takes OLSR as a baseline.

A. BMX6

BatMan-eXperimental version 6 (BMX6) [10] is the suc-

cessor of the BMX daemon (BMXd) which emerged as an

independent branch from the BATMAN routing protocol [11]

to explore and test new approaches for routing and context

dissemination in mesh networks. The design and development

of this new version was driven by the objective to better cope

with the increased address space given by IPv6 addresses,

enable node-individual configurations while clarifying the

handling of conflicting node announcements (e.g. duplicate

address allocations), and allow efficient state dissemination

(thus reduced protocol overhead) through the strict distinction

between local and global as well as static and dynamic state.

BMX6 as well as BMXd are actively used in current mesh

networking communities and projects such as Guifi.net (qMp

[12] and Graciasensefils.net [14] ), Freifunk [15], and Lugro-

mesh [13].

BMX6 is a table-driven routing protocol for wireless mesh

networks. As any table-driven routing protocol, its goal is to

compose a path from source to destination by deciding on each

node which will be the next hop. BMX6 is a distance-vector

protocol, since the information each node manages is a list of

tuples of nodes’ identifiers and the cost of getting there when

choosing a concrete link: ¡destination node, next hop, cost¿.

The novelty in BMX6 is the dissemination mechanism it uses

to propagate this information. The dissemination protocol is

inspired by human social networks that are scalable as people

tend to learn more about its neighbourhood and abstract and

filter out information about others. Topology knowledge in a

node is optimised for itself and its neighbours by using local

compact identifiers for a local compressed stateful dialogue.

This concept can be considered as a technique of stateful

compression applied to a distributed system, which differen-

tiates two different states for the routing protocol: (i) tran-

sient and (ii) steady. During the transient phase, neighbours

exchange knowledge about their environment: nodes’ descrip-

tions, links, etc. and provide information about their internal

identifiers (IID), which identify nodes in a compact way. With

this information, each node sets up a dictionary table per

neighbour that translates its IID values to the globally unique

and non-ambiguous hashes of the full node description. On the

steady state, each node has a local information state in the form

of IID-to-hash dictionaries; and a global information state as

hash-to-description dictionary. During this phase the protocol

just exchanges small packets to keep track on the variation

of link metrics and to monitor network changes. Thanks to

the information state deployed during the transient phase, the

fields of this periodically exchanged routing updates, which

are usually given by a 128 bit IPv6 address, can be substituted

by the much shorter IID value (16 bits), and thus it results in

compressed messages. The separation in local and global state

also pays off when a node moves, and therefore, its neigh-

bourhood changes, because it only needs to re-establishment

of IID-to-hash relations, whereas already existing knowledge

about pairs between hashes and corresponding descriptions is

still valid.

As a result, the control overhead will increase when there is

a network change, stabilizing afterwards to a lower value. This

can be seen in Figure 1. Figure 1 illustrates the total traffic

in the network generated by OLSR and BMX6 when booting

a network of 60 nodes at time 0; then 180 seconds later, a

new node connects to the network. As we can see, regarding

BMX6, there is an considerable peak at the very beginning,

result from the exchange of nodes descriptions and local IID

tables; later on, when the new node connects, it imposes a new

peak of traffic, but clearly smaller than the first one, since there

is less information to be exchanged.

It needs to be considered, that a typical situation would be

small changes in the network, like connecting or disconnecting

a node from the network, while simultaneous booting of all

the nodes in the network is not common. However, a similar

effect can be expected in case that two separate mesh clouds

become one single network by the deployment of a new link

that interconnects them. On this case, we can expect a high

peak of traffic, since every node on the network needs to learn

about all the nodes in the other cloud.

Consequently, there are two different types of messages

on BMX6 depending on their nature: (i) periodic messages,

that are periodically generated by the protocol on every node;

and (ii) occasional messages, that are exchanged only when

necessary because of a change in the network.

The periodic messages generated by BMX6 are responsible

for the little overhead during the steady phase, and they are:

• Hello advertisement (HELLO ADV) messages are broad-



Fig. 1: Network overhead versus time on a 60 nodes network

casted every HELLO INTERVAL, which by default is

0.5 seconds. They are used to measure the link quality

(based on the number of received messages) and to know

whether a link is alive or not.

• Similarly, report advertisement (RP ADV) messages are

periodically broadcasted as response to the HELLO ADV

messages, and therefore every HELLO INTERVAL.

They provide a summary of the received and lost hello

messages from all neighbours and related links.

• OGM ADVs or OriGinator Messages are sent every

OGM INTERVAL (which by default is 5 seconds) and

propagated over the network. They are used to let nodes

become aware of other nodes further than just one hop

away and inform about the path metric to the originating

node. However OGM ADVs are not flooded indiscrim-

inately through the network, but just through so called

relevant links. A link is relevant whenever it is necessary

to reach one of the nodes in the network, i.e. it is the

next hop of at least one entry in the routing table.

In contrast, the occasional messages create a peak of traffic

when there is a change on the network, allowing nodes to gain

knowledge about their neighbourhood or learn about the full

description of a formerly unknown node. These messages are:

• Link advertisement (LINK ADV) and optional device

advertisement (DEV ADV) messages are broadcasted

on demand (due to the reception of LINK REQ or

DEV REQ messages) to describe the existence and fur-

ther attributes of network devices and links from the

perspective of an individual node. Each LINK ADV

message represents a link as perceived (due to previous

received HELLO ADVs) by the transmitting node to one

of each neighbours. The order in which LINK ADV

messages are aggregated is further used as an implicit

reference to a specific link of the node when creating or

processing RP ADVs messages.

• Description advertisement (DESC ADV) messages are

exchanged between nodes, providing a full description

of a specific node, containing details such as their IP ad-

dresses, hostname, and protocol parameters. Description

messages are requested via DESC REQs messages due

to the receipt of an unknown description hash.

• A hash advertisement (HASH ADV) message provides

the relation of a node-specific IID value to the hash of

a specific node description that is used for globally non-

ambiguous node identification. By means of description’s

hashes BMX6 refers to already known nodes without hav-

ing to send the full description of the node. HASH ADV

messages are requested whenever an unknown IID refer-

ence or a message from an unknown node is received.

In summary, BMX6 achieves to reduce its overhead by

using two different mechanisms: first, it optimises the traffic

transmitted periodically through the network by means of es-

tablishing a common understanding between neighbours using

compact IIDs and description hashes; secondly, it controls the

flooding of messages by analysing whether a link is relevant

or not, and omits non-relevant links on the flooding of OGMs.

B. OLSR

OLSR, as specified in RFC [16], is a proactive routing

protocol that uses an optimised version of a pure link-state

protocol. It is optimised in terms of overhead, since topology

control messages are not purely flooded through the network,

but selectively by the MultiPoint Relays (MPR). MPRs are

selected in a distributed fashion, so each node selects a small

set of immediate neighbours to be its set of MPR, which satisfy

that every 2-hop away neighbour can be reached through one

of the nodes on the MPR set.

However, its wide usage in existing mesh networks has

shown that the MPR based optimisation is inefficient when

faced with the dynamic changes and poor links that occur

in real-life and self managed deployments. To overcome this,

the MPR algorithm is disabled in the currently most used

OLSR implementation from olsr.org. Instead, the OLSR fish-

eye extension is activated by default to reduce the average

protocol traffic overhead.

Currently, most existing community-mesh networks are us-

ing this implementation for the whole network (e.g. Freifunk

[15], Funkfeuer [20]) or in parts of the network (e.g. Guifi.net

[18], AWMN [19]). Since its first larger deployments in com-

munity networks in 2003, the code has constantly improved

and become a very stable, mature, and future rich solution for

small and large-scale mesh projects.

OLSR has been described, analysed, and discussed exten-

sively during previous work [16], [9], [7]. In the following

we are just briefly reviewing the most important principles

and messages of the OLSR implementation used for our

evaluations and how they relate to protocol traffic overhead

and convergence time.

OLSR periodically broadcasts two types of messages:

• HELLO messages are broadcasted every 2 seconds by

default by every node and only travel one hop. HELLO



messages mainly contain the sender’s IP, a list of its

neighbours, and the link status. They are used to calculate

the link qualities between nodes.

• Topology Control (TC) messages are flooded through

all the network. In case of disabled MPR algorithm,

these messages are originated by all nodes (otherwise

TC messages are flooded selectively by the nodes that

are selected as MPRs). TC messages have an originator

address and a list of its neighbours with corresponding

link qualities. TC messages are processed by each node to

internally calculate the full topology graph of the network

which provides the basis for calculating the best next hop

to any given destination.

Like any link-state routing protocol, OLSR is conceptually

vulnerable to routing loops resulting from non-synchronised

topology graphs as calculated by different nodes on the

forwarding path of a data packet. A trade off to this problem is

given by flooding TC messages at a smaller interval, allowing

nodes to recalculate their topology view more often at the cost

of increased protocol traffic overhead and CPU load. The fish-

eye extension for OLSR implements a third way to mitigate

the problem. It is based on the finding that routing loops

usually occur between nearby nodes (thus nodes at one or two

hop distance). To achieve better synchronisation of topology

graphs between nearby nodes while allowing less frequent syn-

chronisation between distant nodes, TC messages are flooded

with different TTL values. Specifically, the sequence of TTLs

with active Fish-eye extension in the OLSR implementation

used for our evaluations is 2,8,2,16,2,8,2,255. This means that

only every even TC message is flooded beyond its two-hop

neighbourhood.

Figure 1 shows the traffic overhead of OLSR under the same

conditions as BMX6. As we can see, since the activation of

the fish-eye extension is delayed, there is a transient state

with higher traffic for the first 140 seconds, which reduces

afterwards when the fish-eye extension becomes active. This

delayed activation is the default behaviour of the used OLSR

implementation with the objective to speed up the convergence

time after the booting procedure of a new node.

IV. EXPERIMENTAL ENVIRONMENT

In this section, we describe our evaluation approach. Our

experiments are using current implementations of BMX6 and

OLSR and execute them in an emulated network environment.

The two routing protocols are deployed on a virtualized

mesh infrastructure using virtual machines (Linux Containers)

interconnected following a real world topology from Guifi.net.

A series of experiments are performed with graphs from 10

up to 90 nodes, measuring metrics related to performance

(convergence time) and cost (protocol overhead).

A. The virtualized mesh infrastructure

Mesh Linux Containers (MLC) [21] is a collection of scripts

based on Linux Containers (LXC) and Linux networking tools.

MLC’s goal is to provide the necessary tools and scripts to

quickly create emulated network topologies including link-

specific packet loss and delay with up to hundreds of nodes.

Using MLC on a single testbed machine (a 2.4GHz Pentium

I5 with 4 cores and 4GB of RAM) we could emulate up

to 200 nodes running either OLSR or BMX6 in its default

configuration and connected in a grid-like topology with

perfect links before the system got overloaded. With 200 nodes

the CPU load (as measured with top) exceeded 75 percent only

during the protocol startup phases.

MLC creates a base LXC container with all the necessary

software that will be run on the testbed. Afterwards, this

container is replicated with the proper routing configuration

files and network configuration depending on the desired

amount of emulated nodes,

On the network side, each container has 3 interfaces which

connect with the other containers through 3 different bridges.

The first bridge is intended for controlling the containers,

while the other two can be used for experimentation. MLC

allows the creation of virtual links between the containers on

the last two interfaces by controlling the forwarding probabil-

ity and delay at link level. Within these restrictions it allows

the definition of any target network topology. For emulating

different link characteristics MLC defines different levels of

link qualities in terms of delay and error probability and

depending on unicast or broadcast traffic. For the evaluation

of this work, we used only one experimentation interface per

node and all emulated links were configured with no loss and

no delay.

B. The test networks

The evaluation is based on the topology of Guifi.net, one of

the largest Community Wireless Networks, with around 17,000

nodes. The topological information is extracted from the

Guifi.net CNML table1, XML-formatted data that represents

Guifi.net network. This table describes all the nodes with

their interfaces and IP addresses, as well as information about

the links in the network. However, this information might be

slightly inconsistent due to unplanned links, or nodes losing

visibility after the initial deployment, etc. Nevertheless, it does

provide a fair approximation to how Guifi.net network looks

like.

On the evaluation of a routing protocol’s performance there

is a set of network characteristics we consider the most

relevant:

1) Overall network size (number of nodes)

2) Network diameter (maximum number of hops between

most distant nodes)

3) Node density (number of links per nodes)

4) Amount of announced interfaces and Host/Network An-

nouncements (HNAs) per node

5) Link quality

This evaluation focuses on the first two: network size and

diameter, restricting the network density to the one defined on

the CNML. Because CNML data describing the growth of the

1Available online at http://guifi.net/en/guifi/cnml/{zone}



selected Guifi.net zones over the past years was not available,

we have chosen a randomised approach to create topologies

of smaller size and diameter based on a single recent CNML

table2. Links have been emulated as perfect for the sake of

simplicity, and the impact of announcements per node has

been neglected during this evaluation where each node is only

announcing the IPv6 address of a single interface.

As final consideration, we have only considered the nodes

belonging to the core network, since the other nodes will

typically be configured with a default gateway to access the

network and will not run a routing daemon. In this case,

Guifi.net point-to-point links belonging to the core network are

assigned an IP address on the network range 172.25.0.0/16, so

after retrieving the network topology from the CNML, it has

been reduced to consider only the links attached to interfaces

with an IP address on the mentioned range. Since our goal is

to analyse how the routing protocols react to the size of the

network, once we obtained the core-graph for several CNML

zones, it has been sampled to generate realistic networks of

different sizes in the following way:

1) One node is chosen randomly from the initial graph and

added to the result graph.

2) Among all the neighbours of this node, another one is

randomly chosen and added to the result graph.

3) This process is repeated, choosing one node randomly

among the neighbours of the previously selected nodes

until the network has the desired size.

4) All the existing links among the selected nodes are also

added to the resulting graph.

Concretely, 100 different networks with sizes ranging from

10 to 90 nodes have been extracted following the mechanism

explained above from the following CNML zones: Alt Em-

pordá, Alt Penedés, Anoia, Bages, Barcelona, Castelló and

Osona. Each of these networks has been simulated 20 times as

explained in the following Section and the results present the

averaged values for each considered variable (nodes or hops).

An example of the extracted network topologies is given by

Figure 2 showing the Barcelona case with 60 nodes.

C. Evaluation metrics

Protocol overhead and the convergence time are the eval-

uation metrics used to compare the two routing protocols as

networks vary in number of nodes.

• Protocol overhead: The overhead of a routing protocol is

the quantity of control traffic required to be sent through

the network in order to work properly. To measure the

protocol overhead each network has been emulated during

a period of 10 minutes while the traffic generated by the

protocol of all the network was being captured. In order

to reflect the overhead of the steady state (which follows

the startup period with a transient increased overhead

as illustrated in Figure 1 and 3) only the protocol data,

captured 200 seconds after the last node has been started,

is taken into account. Furthermore, only a period of 100

2Retrieved the 05-06-2012.

Fig. 2: Topology of a network extracted from Barcelona

CNML with 60 nodes

seconds is considered for calculating average values. The

selected period is illustrated with the filled areas in Figure

3.

• Convergence time: The convergence time measures the

time it takes to the network to be aware of a change in it.

Therefore, it depends not only on the network characteris-

tics and routing protocol, but also on which is the change

in question and the definition of awareness. In this paper,

the change proposed is the connection of a new node

to the network; whereas awareness implies reachability

between all the nodes on the network. Concretely, we

measure the convergence time as the time it takes to the

farthest away node to reply a ping issued by the new

node.

D. The emulation process

In this section the process to evaluate the routing protocols

on each test network is explained.

First, each node on the network is started as an LXC

container with a single interface and it is assigned an IP

address. Then, all the links of the graph are set up. The next

step is to start the routing daemons. We consider that starting

on every run the daemons immediately one after another might

skew the results because periodic messages happen at the

same time on every node. Therefore, we have decided to start

the routing daemon after waiting a random interval since the

previous one was started. The waiting interval is between 0

and 10 seconds, which is big enough to ensure independence

between runs. As consequence, the transient state extends

longer, as can be seen in Figure 3, and the initial peaks of the

routing protocols are smoother. The overhead measurement’s

time interval goes from 200 seconds after the last node of the

network starts its routing daemons and lasts for 100 seconds,

which ensures that the measurement is done during the steady



phase. The overhead is measured on the MLC bridge interface,

so it contains the messages generated by every node.

The next phase measures the convergence time. First, the

new node, N, is connected to the network to a random node,

A. To measure the convergence time, node N starts 2 ping

requests: one to node A an another to node B, which is the

furthest away node in the network. Then the convergence time

is measured as the difference in time of each reply (Figure 4

Fig. 3: Overhead when introducing delays on the start time of

the routing daemons

Fig. 4: How convergence time is measured

Used routing-protocols, as shown in table I, were

parametrised with default values as predefined by its imple-

mentation.

TABLE I: Implementations used for evaluation

protocol project version git revision date

BMX6 http://bmx6.net 0.1-alpha fcba5ac9 Apr 2012
OLSR http://olsr.org 0.6.2 d14c696b Oct 2011

V. EXPERIMENTAL RESULTS

As mentioned before, the evaluation of protocols perfor-

mance is measured through their overhead and convergence

time. The protocols’ overhead in bytes per second is shown

in Figure 5, where dots represent the value of a run and the

lines represent the average value for all the networks with the

same size. As we can see BMX6’s overhead grows slower than

OLSR, obtaining better results for networks with more than

40 nodes.

Fig. 5: Bytes per second depending on the number of network

nodes

The growth rate of each routing protocol can be seen more

clearly on Figure 6, which shows the overhead normalised by

the number of nodes on the network. As we can see both

algorithms grow super-linearly with the number of nodes, but

BMX6 grows way slower than OLSR.

Fig. 6: Protocol overhead per node (Bytes/sec) depending on

the number of network nodes

Regarding the convergence time, as can be seen on Figures

7 and 8, it remains practically constant for BMX6, while it

increases with the number of hops for OLSR. Concretely,

we can see in figure 7 that the average convergence time for



BMX6 stays below 10 seconds, while it grows from almost 20

seconds to 40 seconds for OLSR. This is caused by the fact

that BMX6 immediately triggers the emission of Description

Advertisement messages when a new node appears, since it is

reasonable to consider that if a node is new for someone, it

will also be new for its neighbours. For OLSR, on the contrary,

the new node is notified on TC messages, which have to wait

longer to be sent. The effects of the fish-eye extension can be

clearly seen on the step from 8 to 9 hops, since only 2 out

of 8 TC messages travel farther away than 8 nodes. As one

could intuitively guess, convergence time after the addition of

one random node is quite stable and nearly unaffected by the

total number of nodes in the network graph, as can be seen in

Figure 8.

Fig. 7: Convergence time with different hops between A and

B

These results confirm the scalability of BMX6 with respect

to protocol overhead and convergence time is rather inde-

pendent of the size of the network in terms of number of

nodes or diameter of the graph. In contrast to OLSR with

both parameters growing with the size of the network.

These results confirm the effectiveness of the design of

BMX6 in reducing the protocol overhead and in the scalability

of the mechanisms to deal with changes and growth of the

network.

We are aware that the performance of routing protocols

in typical mesh deployments may depend significantly on

much more network characteristics than have been addressed

in this work. In future work we want to extend our experi-

mentation environment to also consider different link quality,

the amount of interfaces per node that are involved in mesh

routing, and the amount of network announcements per node.

We are also planning to validate our findings by comparing

our emulation results with measurements obtained from real-

world deployments. Therefore, similar experiments shall be

performed on testbeds as Community-Lab, being developed by

Fig. 8: Convergence time with different number of nodes on

the network

the CONFINE project [22], which aims to provide a testbed

embedded in production community networks.

VI. CONCLUSION

Community wireless networks have an organic growth,

with an already large number of nodes with no centralised

or readily manual control. These networks can benefit from

manet routing protocols, that self-adapt to network changes,

to determine a path for the end-to-end delivery of messages

across the network. BMX6 solves this challenging problem in

a decentralised and scalable manner with a protocol overhead

per node and a convergence time that is only marginally

affected by the addition of a new nodes and the size of the

network. In contrast, OLSR suffers from scalability issues for

both metrics.

Looking at the scalability and the availability of an open-

source implementation of BMX6, we believe that this mesh

routing protocol solves the key challenges for routing in Com-

munity Wireless Networks and large wireless mesh networks.

ACKNOWLEDGEMENT

This work is supported by the European Community

Framework Programme 7 within the Future Internet Research

and Experimentation Initiative (FIRE), Community Networks

Testbed for the Future Internet (CONFINE), contract FP7-

288535. Support is also provided by the Universitat Politècnica

de Catalunya BarcelonaTECH and the Spanish Government

through the Delfin project TIN2010-20140-C03-01.

REFERENCES

[1] Bruno, R.; Conti, M.; Gregori, E.; , ”Mesh networks: commodity multihop
ad hoc networks,” Communications Magazine, IEEE , vol.43, no.3, pp.
123- 131, March 2005

[2] D. Johnson, N. Ntlatlapa and C. Aichele, Simple pragmatic approach to
mesh routing using BATMAN, 2nd IFIP International Symposium on
Wireless Communications and Information Technology in Developing
Countries, CSIR, Pretoria, South Africa, 6-7 October 2008



[3] Zakrzewska, A.; Koszalka, L.; Pozniak-Koszalka, I.; , ”Performance
Study of Routing Protocols for Wireless Mesh Networks,” Systems
Engineering, 2008. ICSENG ’08. 19th International Conference on , vol.,
no., pp.331-336, 19-21 Aug. 2008

[4] Ashraf, U.; Juanole, G.; Abdellatif, S.; , ”Evaluating Routing Protocols
for the Wireless Mesh Backbone”, Wireless and Mobile Computing,
Networking and Communications, 2007. WiMOB 2007. Third IEEE
International Conference on , pp.40, 8-10 Oct. 2007

[5] Abolhasan, M.; Hagelstein, B.; Wang, J.C.-P.; , ”Real-world performance
of current proactive multi-hop mesh protocols,” Communications, 2009.
APCC 2009. 15th Asia-Pacific Conference on , vol., no., pp.44-47, 8-10
Oct. 2009

[6] Murray, D., Dixon, M.W. and Koziniec, T. (2010) An experimental
comparison of routing protocols in multi hop ad hoc networks. In:
Australasian Telecommunication Networks and Applications Conference,
ATNAC, 31 October - 3 November, Auckland, New Zealand.

[7] Kuppusamy, P.; Thirunavukkarasu, K.; Kalaavathi, B.; , ”A study and
comparison of OLSR, AODV and TORA routing protocols in ad hoc
networks,” Electronics Computer Technology (ICECT), 2011 3rd Inter-
national Conference on , vol.5, no., pp.143-147, 8-10 April 2011

[8] Ian F. Akyildiz, Xudong Wang, and Weilin Wang, “A Survey on Wire-

less Mesh Networks”, Computer Networks and ISDN Systems archive,
Volume 47 Issue 4, 15 March 2005

[9] Cédric Adjih, Emmanuel Baccelli, Thomas Heide Clausen, Philippe
Jacquet, and Georgios Rodolakis, “Fish Eye OLSR Scaling Properties”,
IEEE Journal of Communications and Networks, 2004.

[10] BMX6 mesh networking protocol, http://bmx6.net
[11] Axel Neumann, Corinna Aichele, Marek Lindner, Simon Wunderlich,

“Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.)”, IETF
Draft, October 2008.

[12] QMP – quick Mesh project, http://qmp.cat/
[13] Lugro Mesh, http://www.lugro-mesh.org.ar/en/
[14] Comunitat GraciaSensefils.net, http://graciasensefils.net
[15] Freifunk, http://start.freifunk.net/
[16] Thomas Clausen and Philippe Jacquet, “Optimized Link State Routing

Protocol (OLSR)”, IETF RFC 3626, October 2003.
[17] OLSRd - an adhoc wireless mesh routing daemon, http://olsr.org
[18] Guifi.net, http://www.guifi.net/
[19] AWMN - Athens Wireless Metropolitan Network, http://funkfeuer.at/
[20] FunkFeuer, http://funkfeuer.at/
[21] Axel Neumann, Investigating Routing-Protocol Characteristics

with Mesh Linux Containers (MLC), Workshop, UPC,
Barcelona, Spain November 2011, [Online], Available:
https://raw.github.com/axn/mlc/master/MeshLinuxContainers-x07.pdf

[22] CONFINE Project: Community Networks testbed for Future Internet,
http://confine-project.eu/


